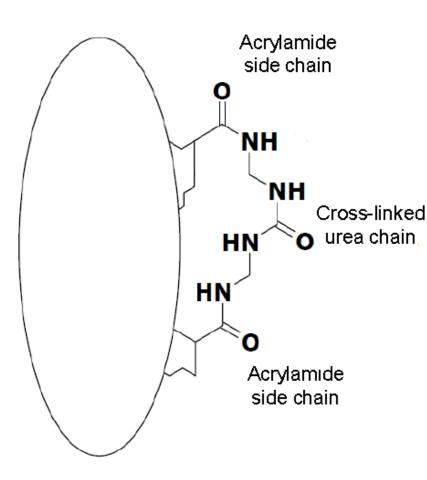


A Novel Desalting Column With High Mechanical Strength for Faster Desalting of Proteins

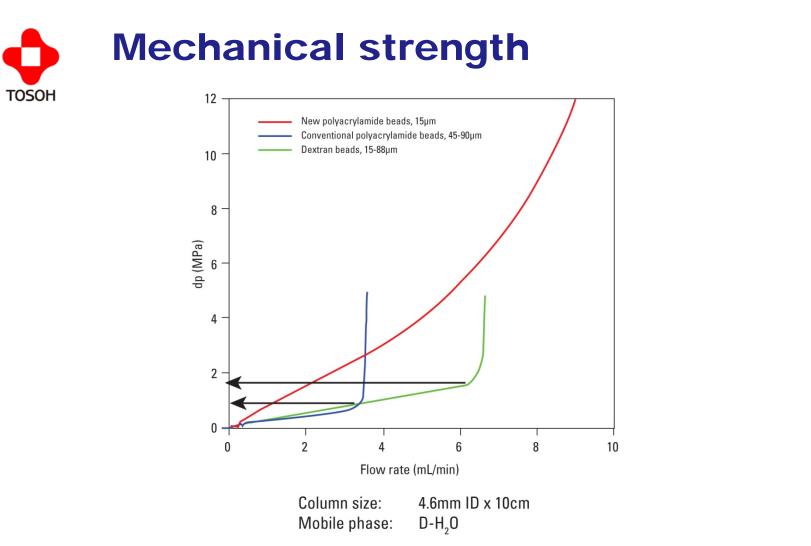
Atis Chakrabarti and Roy Eksteen Tosoh Bioscience LLC, King of Prussia, PA 19406

- Desalting is a process to remove or reduce salt from a liquid stream.
- Proteins elute at high or elevated salt concentration in such chromatographic modes as hydrophobic interaction (HIC), ion exchange (IEC) and size exclusion chromatography (SEC).
- SEC mobile phases for protein analysis may also contain denaturants such as guanidine hydrochloride and urea in addition to salt and buffer.
- Desalting on the basis of size exclusion chromatography is widely used in in biochemical purifications.
- Desalting and buffer exchange of proteins or polynucleotides can also be performed by dialysis, ultra filtration, or by using spin-columns.

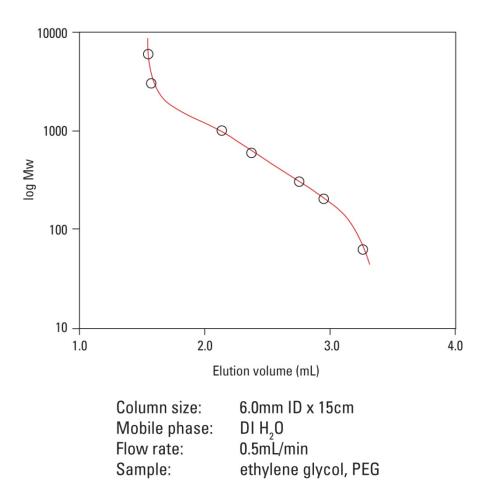


- Desalting columns are characterized by a low exclusion limit and a large pore volume.
- Salts can fully access all pores, while proteins and other high MW species are excluded from the pores and elute in the void volume as a narrow concentrated peak.
- Columns packed with conventional packing materials such as dextran, cellulose and polyacrylamide have limited physical stability and are not suitable when fast desalting is desired.
- We increased the mechanical strength of polyacrylamide gel by four-fold over that of conventional gels
- TSKgel BioAssist DS columns contain 15µm particles packed in 4.6mm ID x 15cm and 10mm ID x 15cm PEEK columns.

To show the usefulness of the new TSKgel BioAssist DS columns for efficient desalting using a conventional HPLC system.



- Backbone of beads is based on polyacrylamide
- Side chains cross-linked with one another through urea



 Highly cross-linked polyacrylamide beads display high mechanical strength and low hydrophobicity

- Conventional beads collapsed at pressures below 1.6MPa (< 250psi).
- TSKgel BioAssist DS polyacrylamide beads did not collapse at 12MPa (1750psi).

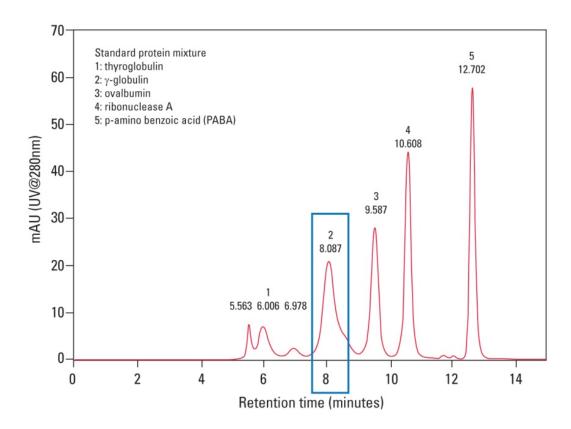
Exclusion limit PEG 2500 MW

- Packing material: Urea cross-linked polyacrylamide
- Particle Diameter: 15µm (Uniform)
- Pore Size excludes: ca. 2500 MW PEG
- Particle porosity: ca. 60%
- Maximum pressure: 4Mpa (< 600psi)

Material and methods: Chromatographic conditions (size exclusion experiment)

- Column: TSKgel G3000SW_{XL,} 5µm, 7.8mm ID x 30cm (S1237-08R)
- Mobile Phase: 100mmol/L KH_2PO_4/K_2HPO_4 , pH 6.7, 100mmol/L Na_2SO_4 + 0.05% NaN_3
- Flow rate: 1.0mL/min
- Detection: UV@280nm
- Temperature: ambient
- Injection vol.: 10µL

 Samples: standard TSKgel SW_{XL} test mixture: thyroglobulin (0.5g/L) γ-globulin (1g/L) ovalbumin (1g/L) ribonuclease A (1.5g/L) p-ABA (0.01g/L)

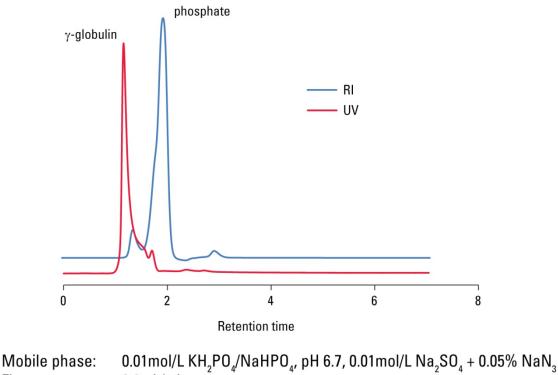

Material and methods: Preparation of protein standards (desalting experiments)

Protein	MW (kDa)	Concentration* (g/L approx.)
ribonuclease A	14.7	19.5
thyroglobulin	670	11.3
γ-globulin	150	14.5
ovalbumin	45	13.1
α -chymotrypsinogen	25.6	13.1
β-lactoglobulin	18.4	10.8
lysozyme	14.7	11.6
myoglobin	16.7	14.5
cytochrome C	12.3	11.0
hemoglobin	68	11.9
	*in 100mmol/L phosphate buffer, pH 6.7	

Material and methods: Chromatographic conditions (desalting experiments)

- Columns : TSKgel BioAssist DS,15µm, 4.6mm ID x 15cm, PEEK
 TSKgel BioAssist DS,15µm, 10.0 mm ID x 15cm, PEEK
- Mobile Phase: 10mmol/L KH₂PO₄/K₂HPO₄, pH 6.7, 10mmol/L Na₂SO₄ + 0.005% NaN₃
- Flow rate: 0.8mL/min (4.6mm ID) and 1.0mL/min (10.0mm ID)
- Detection: UV@280nm and RI
- Temperature: ambient
- Injection vol.: 10µL unless mentioned otherwise
- Samples: γ-globulin was collected after injection of the standard TSKgel SW_{XL} test mixture
- All analyses were carried out using an Agilent 1200 HPLC system run by Chemstation (ver B.04.01).
- All chemicals and standards were pure analytical grade from Sigma-Aldrich.
- Before injection, standards and samples were filtered through a 0.45µm filter.

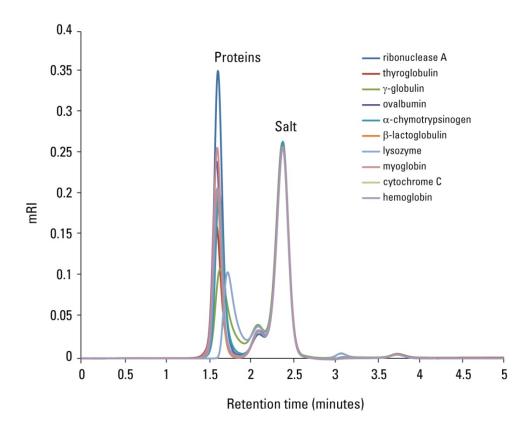
Separation of protein standard mixture using a TSKgel G3000SW_{XL}, 5μm, 7.8mm ID × 30cm column


Mobile phase: $0.1 \text{mol/L KH}_2\text{PO}_4/\text{Na}_2\text{HPO}_4$, pH 6.7, $0.1 \text{mol/L Na}_2\text{SO}_4 + 0.05\% \text{ NaN}_3$

10.0µL of γ -globulin (RT 8.087min) peak fraction was loaded into TSKgel BioAssist DS, 15µm, 4.6mm ID x 15cm column to desalt.

TOSOH BIOSCIENCE LLC

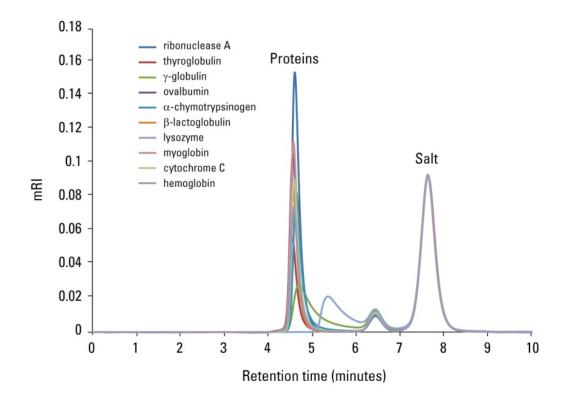
TOSOH


Mobile phase: 0.01mol/L KH₂PO₄/NaHPO₄, pH 6.7, 0.01mol/L Na₂SO₄ + 0.05% NaN₃ Flow rate: 0.8mL/min. Detection: UV@280nm and RI Temperature: ambient

Mobile phase γ -globulin fraction was efficiently desalted within a few minutes.

TOSOH BIOSCIENCE LLC

Desalting proteins using a TSKgel BioAssist DS, 15µm, 4.6mm ID x 15cm column


Proteins in 0.1mol/L phosphate buffer, pH 6.7 Mobile phase: 0.01mol/L KH₂PO₄/Na₂HPO₄, pH 6.7, 0.01mol/L Na₂SO₄ + 0.05% NaN₃

Fast desalting with excellent reproducibility at analytical scale.

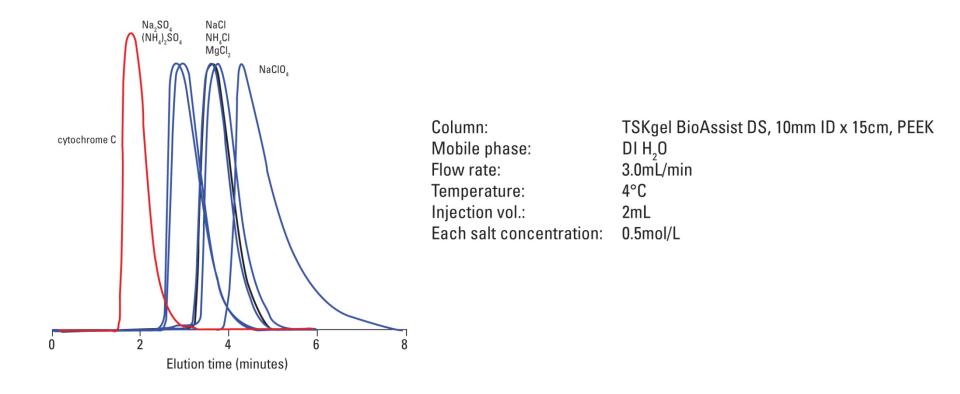
TOSOH BIOSCIENCE LLC

Desalting proteins using a TSKgel BioAssist DS, 15µm, 10mm ID x 15cm column

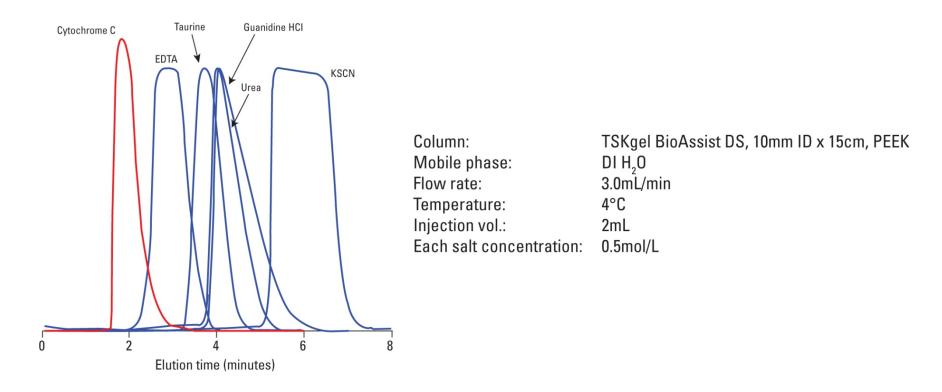
Proteins in 0.1mol/L phosphate buffer, pH 6.7 Mobile phase: 0.01mol/L KH₂PO₄/Na₂HPO₄, pH 6.7, 0.01mol/L Na₂SO₄ + 0.05% NaN₃


Fast desalting with excellent reproducibility at semi-preparative scale.

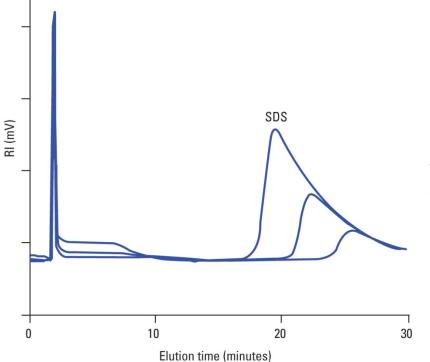
TOSOH BIOSCIENCE LLC


- The column has high loading (desalting) capacity.
- Less than 5% RSD (n=4) in efficiency up to a load of 1.5mg of Ribonuclease A.
- The resolution between the protein and salt peak was always >6.
- Even at ~2mg protein load of Ribonuclease A, the resolution between the protein and salt peak was 4.33.
- TSKgel BioAssist DS, 15μm, 4.6mm ID x 15cm column yielded a resolution of >2 at 1950μg load of Ribonuclease A (F=0.8mL/min).
- This study shows that both TSKgel BioAssist DS columns can be effectively used for desalting a large sample load.

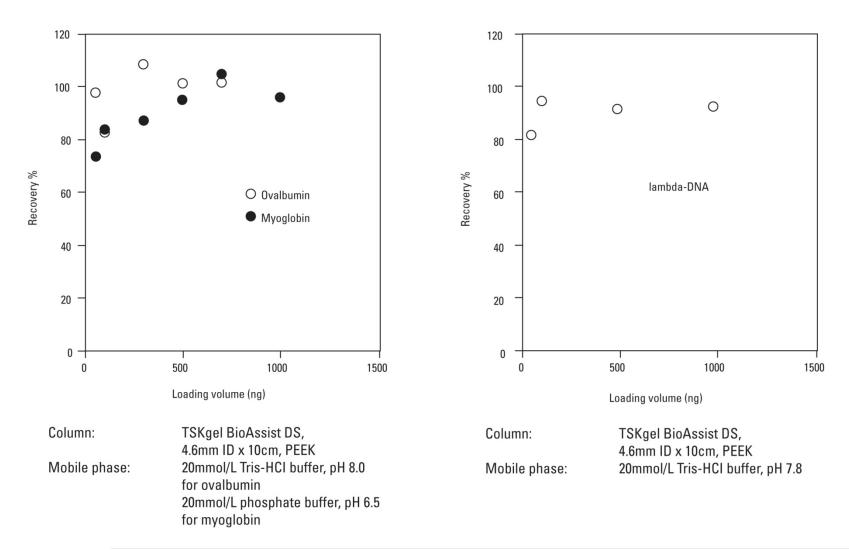
Effect of injection volume on desalting profiles



Elution profiles of high salt concentration



Elution profiles of SDS



Column:

Mobile phase: Flow rate: Temperature: Sample: TSKgel BioAssist DS, 4.6mm ID x 15cm, PEEK 20mmol/L phosphate buffer, pH 6.9 1.0mL/min 25°C 0.1-0.5wt% SDS in eluent

Recovery of selected proteins and DNA

- TSKgel BioAssist DS columns are designed for desalting of proteins and polynucleotides at semi-preparative scale with the following features:
 - 4-fold higher mechanical strength over that of conventional gels
 - Columns can be used at pressure up to 4MPa (600psi). Beads do not collapse at 12MPa pressure.
 - Exclusion limit of 2500Da (PEG)
 - Minimal secondary adsorption
 - Typical separation times of less than 5 minutes
 - High loading capacity
 - High recovery down to ng protein injected
 - Excellent reproducibility